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Abstract

End-to-end interactive learning of dialogue systems has been all-but-abandoned in
favour of other approaches using more labelled data, such as dialogue state tracking.
A major issue of the approach is that using language models as speaker and listener
can lead to “language drift.” Models are trained only to optimize a task objective
and so their intermediate language can drift from pretrained natural language to an
un-natural communication protocol. We reproduce previous work on tackling this
phenomena and find that baseline methods are not as bad as reported. Furthermore,
we use a simple KL regularization with an EMA model to stabilize RL training and
outperform previous methods. Finally, we investigate the issue of “language drift”
and find that it focuses only on the sender. We argue that “receiver drift” is equally
important and show strong results on this novel metric.

1 Introduction

Dialogue agents that can interpret language and take actions in an environment are a long-term
challenge for NLP. In particular, the methodology of training dialogue agents can be quite challenging.
The current dominant paradigm is dialogue state tracking whereby dialogue is a supervised learning
problem that relies of large amounts of labelled dialogue utterances, states, and actions. But labelling
is a fundamentally difficult task and approaches that use less labelled data are of great interest. A less
popular approach to dialogue is end-to-end learning that relies on training two (or more) dialogue
agents to play both sides of the dialogue and train together. This approach leverages pretrained
models and trains on the dialogue task directly allowing models to learn task-specific language and
actions. But by optimizing two dialogue agents on a task without any language supervision can lead
to “language drift” [Lee et al.| |2019]. First demonstrated by |[Lewis et al.|[2017]], when two language
models are trained with self-play on an end-to-end negitation task using RL, their communication
drifts from their pretrained natural language to an in-human communication protocol with unknown
semantics. Language drifts because agents are provided a reward solely for completing the task, and
there is no language-level supervision requiring them to maintain a human-understandable language.

This problem has also been a major challenge in the field of Emergent Communication (EC), which
investigates how two neural networks can communicate to solve a task [Wagner et al.,[2003| Lazaridou
and Baroni, 2020]. Previous approaches have sought to use a language model, another modality to
ground communication [Lee et al.,|2019]], multi-tasking [Lowe* et al., 2021]], and iterated learning
[Lu et al.,[2020a]. This work proposes that previous accounts of language drift have over-stated the
severity of the problem and we propose a simple and efficient method to better counter language drift.
First, we demonstrate that the severity of language drift has been overstated by reproducing previous
work and, without hyperparameter tuning, achieve much better performance using the baseline model.
Though previous work on language drift has focused on LSTMs, we demonstrate the same effect
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Figure 1: An interactive game with language compared to the Translation Game [Lee et al., 2019]

using Transformer models. Next, we examine previous performant methods to counter language
drift and find that they are, to an extent, a tradeoff between maintaining the pretrained language and
accomplishing the task. Inspired by recent practical and theoretical work, we use KL regularization
between an online and EMA target network to counter language drift. Our method reduces language
drift the most and yet can accomplish the task just as well as methods with more drift. Finally, we
examine the practical origins of language drift and argue that previous drift metrics focused solely on
the sender. We propose a novel drift metric for interactive language learning, receiver drift, and show
why it may be more useful. We demonstrate strong results on the new metric that show promise for a
resurgence of end-to-end methods for interactive language games.

2 Related Work

“Language Drift” in neural language models was first demonstrated by [Lewis et al.| [2017]] by training
two language models on a negotiation task and finding that the resulting syntax and semantics did not
correspond to natural English. Since then, there has been a variety of work centered on countering
language drift. Since it is difficult to measure the correctness of dialogue utterances,
introduce the Translation Game as a benchmark task for language drift. Two models translate from
French to English and English to German, respectively, and can measure accuracy using BLEU since
the intermediate protocol is just English. They proposed a baseline that used a standard language
model loss on the intermediate English representation to counter language drift, also later used by
[Steinert-Threlkeld et al.|[2022]. They then outperformed the baseline by grounding the intermediate
English in a separate modality, images. proposed iterated learning and demonstrated
improved performance on the same game. They later showed that multi-task learning on the original
pretraining task (termed S2P by [Lowe* et al.| [2021]]) was further effective at maintaining semantic
coherence 2020b]). Similarly, when finetuning GPT-3 [Brown et al., [2020] on human
feedback using reinforcement learning, |Ouyang et al.|[2022] added the original pretraining objective
to maintain linguistic consistency. On a different task, [Lazaridou et al.|[2020] argued that countering
language drift at the level of semantics is best done by fixing the sender and learning to choose
samples from it.

Language drift is also present when learning policies through latent language in RL
[2018]] and similarly, multi-tasking has been shown to be effective there [Jacob et al.,[2021]. The
pretrain-then-finetune setup with the goal of maintaining pretrained knowledge can be seen as a
specific instance of continual learning and therefore language drift has links to catastrophic forgetting
[McCloskey and Cohen| [1989]]. There is a clear similarity between mitigation methods: rehearsal

Robins, |1995] or experience replay [Rolnick et al 2019] is equivalent to multitasking with the
pretraining objective [Lowe* et all, 2021] and weight-update regularization [Kirkpatrick et al.| 2017]

has similarities to the proposed KL regularization.




3 Setup

Translation Game We follow Lee et al.|[2019] to set up the Translation Game. Two translation
models, French to English (FR—EN) and English to German (EN—DE), are pretrained on IWSLT
data [Cettolo et al., 2012]]. Each model is a seq2seq [Sutskever et al.,|2014] LSTM [Hochreiter and
Schmidhuber;, | 1997] with attention [[Bahdanau et al., 2015]]. From the perspective of a sender-receiver
game [Lewis, [1969]] we consider FR—EN to be our sender and EN—DE to be our receiver. The
models are given only paired French and German from Multi30k [Elliott et al.,[2016}2017] and learn
to translate through an English pivot as shown in Figure[T] We measure success on the task as the
overall FR—EN—DE BLEU score on the validation set. Since the models are not given English at
finetune-time, we can measure the language drift as the drop in FR—EN BLEU on the validation set
over training.

All experiments are run for 40k steps and, for fair comparison, all translation game models are
initialized from the same pretrained models. We implement the translation game in the fairseq library
[Ott et al., 2019] and run all experiments using 5 seeds where each run uses a single V100 GPU. All
plots show the mean and standard error over seeds.

Baselines The EN—DE receiver is trained using cross-entropy between predicted and true DE.
The main challenge is how to optimize the FR—EN sender by backpropogating the gradient through
the discrete EN tokens. The most basic baseline is frozen-sender, we freeze the FR—EN sender
and only update the EN—DE receiver. To train the sender, we must use a gradient estimator such as
REINFORCE [Williams, |1992] as used by [Lee et al.|[2019]] or Gumbel-Softmax [Jang et al., 2017,
Maddison et al., 2017]] as used by [Lu et al.| [2020a]. We choose reinforce with an exponentially
moving baseline and as with previous work, add a loss for entropy regularization.

To counter language drift, we implement previously introduced methods as baselines. We train an
LSTM language model on IWSLT English text and use it to regularize the FR—EN sender. During
the translation game, the LM baseline gets the negative log-likelihood of the sender’s generated
EN text under our trained language model and adds it to the sender’s REINFORCE reward. We
implement multitask learning i.e. S2P [Lowe* et al.,|2021]] by re-training the FR—EN sender on
its pretraining data, IWSLT, as an auxiliary loss during the translation game. Finally, we implement
Seeded Iterated Learning [SIL;Lu et al.,|2020a] where agents alternate between the translation game
and a form of knowledge distillation. A “teacher” sender and receiver train on the translation, then
distill knowledge into a “student” sender and receiver respectively, finally the students are initialized
as teachers for the next iteration.

EMA KL Regularization We argue that language drift is a problem of noisy optimization. Recent
theoretical [|Geist et al.,|2019, |Vieillard et al.| 2020bja] and practical work in RL [Schulman et al.,
2015} [2017] has demonstrated the efficacy of using a KL divergence between an online policy 7y
and target policy 75 to achieve stable training. We follow (Chaabouni et al.[[2022]] and create a target
policy by taking an exponential moving average (EMA) of our online policy’s parameters during
training 6 < (1 — 7)0 + nf for some EMA parameter 7. We create a target policy for the FR—EN
sender and add an auxiliary KL loss between the online sender and target sender. Specifically, we
generate EN text using the online FR—EN sender, and the auxiliary loss on the online network is the
KL divergence between the logits of the online and target network. We refer to this method as EMA.

4 Experiments

First, we pretrain FR—EN and EN—DE models on IWSLT and reproduce IWSLT validation results
from Lee et al.| [2019], see Table[I]in Appendix [A] We evaluate our pretrained models, zero-shot, on
Multi30k for both FR—EN and FR—+EN—DE and get better initial scores than Lee et al.|[2019], Lu
et al.|[2020a]] most likely due to better pretraining and preprocessing, see Appendix

Now, we interactively finetune our models on the translation game and plot our results in Figures
[2a] 2b] As a sanity check, frozen-sender does not drift but also does not achieve a very high
task performance. Most surprisingly, our baseline method, REINFORCE, does not drift much but
still achieves relatively good task performance. This contrasts with previous work where baseline

We also implemented Gumbel-Softmax and found similar, but slightly less performant results
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Figure 2: Comparing methods on the Translation Game. We measure Language Drift (a) and Task
Performance (b) over finetuning using FR—+EN and FR—+-EN—DE BLEU respectively. Combined
performance (c) is the sum FR—EN + FR—-EN—DE BLEU and Receiver Language Drift (d), is our
novel metric EN—DE BLEU.

REINFORCE or Gumbel-Softmax methods were reported to have high levels of drift. As well, our
results with SIL [Lu et al.||2020a] are negative. We discuss both discrepancies further in Appenix

In line with previous results, we find that multi-tasking and an LM loss are both beneficial to reducing
drift. But, as previously noted, these methods are auxiliary losses weighted by hyperparameters A
and the tuning of these hyperparameters is a direct tradeoff between drift and task performance. To
demonstrate this, we choose a weight A = 0.01 for our LM loss and find that it does not strongly
impact task performance but neither does it strongly reduce drift. In contrast, we set our multitask
weight A = 0.01 and show it helps drift greatly but reduces task performance. Our KL regularization,
EMA, manages to improve drift and also maintain high task performance. This is most evident when
looking at the sum of our two metrics FR—EN + FR—EN—DE, as shown in Figure where
EMA clearly maintains the highest sum. To confirm that these results are not artifacts of our model
architecture, we implement the same setup using larger Transformer models [Vaswani et al., 2017]].
We find similar results and demonstrate the efficacy of EMA in Appendix [C|

Next, we reconsider our current metrics. Inspired by interactive dialogue, Lee et al.|[2019] proposed
to measure language drift using FR—+EN BLEU. But this assumes that we would use the sender with
humans after interactive training. Instead, it is just as reasonable to assume that our goal is to learn a
receiver e.g. a flight booking system that takes natural language input and outputs a flight booking
action. To this end, we should measure the receiver’s language drift i.e. how much the receiver’s
understanding has drifted. In the translation game, we measure the DE BLEU score from inputting
true EN text to our EN—DE receiver (as opposed to sender generated EN text in FR—EN—DE). We
show results in Figure 2dand find, surprisingly, that all methods generally don’t drift. Indeed, the
REINFORCE baseline method performs as well as EMA and both outperform the frozen-sender.
This implies that, in interactive training, the EN—DE receiver does not forget the true EN distribution
while also learning the sender’s drifted EN distribution.



5 Conclusion

We have demonstrated the efficacy of a simple KL regularization with an EMA model to counter
language drift. Furthermore, we argue for a novel metric, receiver drift, and demonstrate that all
methods perform well. With this in mind, we believe that interactive training with pretrained language
models can be an effective training method, unencumbered by language drift.
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A IWSLT Pretraining

We follow [Lee et al.,| [2019]] for preprocessing and pretraining, with the addition of using early
stopping on the IWSLT validation set (tst2013) to choose our pretrained model.

| FR—EN | EN—DE

Lee et al.|[2019] 34.1 22.0
Lu et al.[[[2020a] 322 20.2
Ours 38.5 23.2

Table 1: BLEU score of IWSLT-pretrained models on IWSLT 2013 validation set

B Translation Game Results

Method FR—EN | FR—EN—DE | Drift | Perf | Combined
“[Lee et al[[2019] | pretrained 272 16.3

REINFORCE 12.4 +£0.7 245+ 1.5 -14.8 | +8.2 -6.6

+ LM 23.6+1.1 27.7+0.4 36 | +114 +7.8

+LM + G 24.8 +0.4 28.1 +0.7 24 | +11.8 +9.4
“[Lu et al.[[2020a] | pretrained 29.4 15.7

gumbel-softmax 14.5+0.8 271+£0.1 -149 | +114 -3.5

SIL 29.4+0.3 28.3+0.2 0 +12.6 +12.6

Ours pretrained 32.6 18.0

frozen-sender 3260 25.1+£0.1 0 +7.1 +7.1

REINFORCE 30.0 £0.2 30.3+0.2 2.6 | +12.3 +9.7

LM X =0.01 31.5+0.1 30.2+0.2 -1.1 | +12.2 +11.1

Multitask A = 0.1 | 32.9 £0.2 28.5+0.3 +0.3 | +10.5 +10.8

SIL 27.7+0.7 24.3+0.1 -4.9 6.3 +1.4

EMA )X =2 32.6 £ 0.1 29.8 +0.1 0 +11.8 +11.8

Table 2: BLEU scores and pm standard deviation on the Multi30k Translation Game using IWSLT-
pretrained LSTM models. Drift is the negative change in FR—EN BLEU from the pretrained
model. Task performance is the positive change in FR—+EN—DE BLEU from the pretrained models.
Combined is the sum of drift and task performance. We show the pretrained, baseline, and best-
performing model from previous work. Note that our results are not directly comparable to previous
work because we evaluate using detokenized sacreBLEU [Post, [2018|] whereas previous work wrote
their own BLEU evaluation code and did not detokenize.

Our results for the baseline are notably better than [Lee et al.|[2019], |Lu et al.|[2020a]. The only
difference between our code and theirs as far as we can tell is

1. we use an exponential moving average baseline for REINFORCE whereas [Lee et al., |2019]
use an Actor-Critic method

2. [Lu et al.{[2020a]] uses 0.1 gradient clipping and we do not use gradient clipping

3. in preprocessing Multi30k, we first tokenize [Koehn et al.,2007] then lowercase whereas
previous works did the inverse.

A more reasonable explanation for the improvement in results is how we choose to evaluate. Previous
work simply ran all methods for the same number of updates but this doesn’t account for, even
implicit, hyperparameter optimization. Previous methods show that the baseline’s FR—EN—DE
BLEU scores plateau and there is significant language drift in FR—EN without real improvements
to the task score. We hypothesize that these extra training episodes only serve to increase the drift
without measuring what we actually care about: performance gain for drift. Since the number of
updates is arbitrary, we believe that early stopping on a reasonable metric is a better evaluation
protocol.

To that end, we choose our combined metric to be the sum of the two metrics FR—EN—DE and
FR—EN which we plot in Figure We choose learning rates so that all methods "peak" at around



40k updates. Looking at the combined metrics, we see that our EMA method outperforms others by a
reasonable margin i.e. methods that perform on FR—+EN—DE drift more and methods that do as
well on FR—EN do not reach as high a task performance.

We also note that our results with the SIL method of [Lu et al.| [2020a] are negative. We do not
manage to gain any improvement in performance. We collaborated with the authors of |[Lu et al.
[2020a] for many months but, in our setup, could not reproduce their results. At its core, we could
not reproduce their fundamental results: a teacher sender can be outperformed by the student sender
that it is distilling to.

C Translation Game with Transformers

We replicate the same experiment using transformer models to demonstrate that our method is not
restricted to the LSTM architecture. We use a 6-layer Transformer-small architecture and follow the
standard IWSLT translation setup of [Ott et al| [2019]]. We plot results in Figure 3] and find results
similar to those with an LSTM in Figure 2]

Once again, the frozen-sender sanity check does not drift but neither does it perform as well.
Multitask and LM are both tradeoffs between drift and performance. Results with SIL are still
negative. And EMA is still the best-performing model, clearly visible when looking at the combined
metrics in Figure

FR-EN FR-EN-DE

sender = Multitask (S2P) = LM loss - EM = baseline zen-sender = Multitask (S2P)

BLEU

Step Step
10k 20k 30k 40k 10k 20k 30k 40k

(a) Language Drift (b) Task Performance

FR-EN + FR-EN-DE EN-DE

= baseline = frozen 1de = Multitask (S2P) == LM loss - = bas

BLEU

—

S SN

60 7

10k 20k 30k 40k - 10k 20k 30k 40k
(c) Combined Metrics (d) Receiver Language Drift

Figure 3: Comparing methods with a Transformer architecture on the Translation Game. We measure
Language Drift (a) and Task Performance (b) over finetuning using FR—EN and FR+EN—DE
BLEU respectively. Combined performance (c) is the sum FR—EN + FR—+EN—DE BLEU and
Receiver Language Drift (d), is our novel metric EN—DE BLEU.



	Introduction
	Related Work
	Setup
	Experiments
	Conclusion
	IWSLT Pretraining
	Translation Game Results
	Translation Game with Transformers

